

Catalysis Today 29 (1996) 53-57

Role of supported metals in the selective reduction of nitrogen monoxide with hydrocarbons over metal/alumina catalysts

Hideaki Hamada ^{a, *}, Yoshiaki Kintaichi ^a, Megumu Inaba ^a, Mitsunori Tabata ^b, Tomohiro Yoshinari ^b, Hiroshi Tsuchida ^b

National Institute of Materials and Chemical Research, Higashi, Tsukuba, Ibaraki 305, Japan b Cosmo Research Institute, Gongendo, Satte, Saitama 340-01, Japan

Abstract

The promoting effect of supported metals on alumina catalyst was investigated for the reduction of nitrogen monoxide in oxygen-rich atmospheres. For NO reduction with propene over impregnated CoO/Al_2O_3 , the first reaction step was found to be the oxidation of NO to NO₂ probably catalyzed by dispersed cobalt species. The next reaction step, which is the reaction of NO₂ with propene to form N₂, was considered to take place on the alumina surface. Although the activity of impregnated FeO/Al_2O_3 was low because of the presence of large iron oxide particles catalyzing propene oxidation with dioxygen, FeO/Al_2O_3 prepared with sol-gel method showed excellent deNO₂ activity.

Keywords: NO_x reduction; CoO/Al₂O₃ catalyst; FeO/Al₂O₃ catalyst

1. Introduction

The selective reduction of NO with hydrocarbons in oxygen-rich atmospheres has been reported over various catalysts such as zeolites [1], metal oxides [2] and noble metals [3]. We reported that alumina showed good activity for this reaction among metal oxide catalysts [4] and that supporting metals such as cobalt, iron, copper, etc. promoted the activity of alumina at low temperatures and at high space velocity [5]. The favorable effects of gold and silver were also reported [6,7].

In this paper, we investigated the effect of cobalt and iron addition on the performance of

2. Experimental

Alumina used in this study was obtained from Sumitomo Chemicals (NK324, 189 m² g⁻¹, calcined at 600°C). Alumina-supported cobalt and iron catalysts were prepared by impregnating the alumina with aqueous cobalt acetate and nitric acid-dissolved iron oxalate solutions, followed by drying and calcination in air streams. The catalyst samples are abbreviated as CoO/ or FeO/Al₂O₃ (calc. temp./°C). We also prepared alumina-supported iron catalysts with sol-gel method in which hexyleneglycol

alumina and discussed the role of the supported metals in terms of the state of surface metal species.

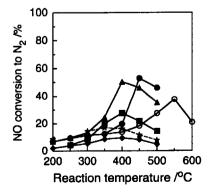
^{*} Corresponding author.

was used as the solvent. The samples are denoted as FeO/Al_2O_3 (SG, calc. temp./°C).

Catalytic activities were measured with a fixed bed flow reactor. The reaction gas contained NO, NO₂, O₂ and C₃H₆ diluted in helium. Standard experiments were performed by using 0.2 g of catalyst with a total gas flow rate of 62 cm³ min⁻¹. Steady state measurements were made by decreasing the temperature down from the catalyst calcination temperature. The effluent gas was analyzed by gas chromatography and the catalytic activities were expressed by the conversion of NO to N₂ and that of propene to CO_x. For catalyst characterization, XPS, NO chemisorption, TEM measurements were made. NO chemisorption was done with a pulse technique at room temperature.

3. Results and discussion

3.1. Activity of impregnated cobalt / and iron / alumina


Fig. 1 shows the catalytic activity of CoO/Al₂O₃ (500) with different cobalt loading and 2% FeO/Al₂O₃ (500) for NO reduction with propene in the presence of 10% dioxygen. Alumina gave maximum NO conversion to N₂ at 550°C. When cobalt was added to alumina by

impregnation, the effective temperature for NO reduction became lower with an increase of propene oxidation. The highest NO conversion was obtained on 0.1% and 0.5% CoO/Al₂O₃. Higher cobalt loading resulted in a decrease of NO conversion. On the other hand, the addition of iron did not promote the deNO_x activity of alumina, although a shift of the effective temperature range for NO reduction was observed.

The effect of calcination temperature on the activity of 2% CoO/Al₂O₃ is shown in Fig. 2. The deNO_x activity increased with the calcination temperature. This tendency was similar to the effect of cobalt loading. The low activity of 2% FeO/Al₂O₃, on the other hand, was not influenced by calcination temperature.

In order to get information on the role of supported metals, the catalytic activity for propene oxidation with dioxygen in the absence of NO was examined. The results are shown in Fig. 3. Obviously, loading of 0.1%-0.5% CoO did not change the activity of alumina much. More than 2% CoO loading enhanced the oxidation activity. It should be noted that the activity of 2% FeO/Al₂O₃ was quite high compared to CoO/Al₂O₃ catalysts.

It can be seen by comparing Figs. 1 and 3 that the conversion of propene to CO_x on 0.1–2% CoO/Al_2O_3 was much higher for the reaction of $NO-C_3H_6-O_2$ than that for $C_3H_6-O_2$.

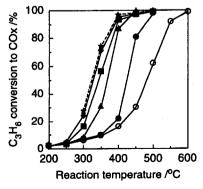


Fig. 1. Activity of CoO/ and FeO/Al₂O₃ (500) for the selective reduction of NO with C₃H₆. (NO = 962 ppm, O₂ = 9.9%, C₃H₆ = 326 ppm, $W/F = 0.19 \text{ g s cm}^{-3}$). \bigcirc Al₂O₃, \bigcirc 0.1% CoO, \triangle 0.5% CoO, \bigcirc 2% CoO, \bigcirc 5% CoO, \bigcirc 2% FeO.

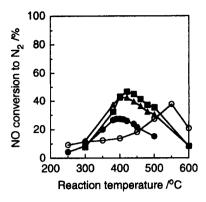


Fig. 2. Effect of the calcination temperature on the activity of 2% CoO/Al₂O₃. (NO = 962 ppm, O₂ = 9.9%, C₃H₆ = 326 ppm, W/F = 0.19 g s cm⁻³) \bigcirc Al₂O₃, \bigcirc 500°C, \triangle 600°C, \blacksquare 800°C.

This fact suggests that the first reaction step for the reaction of NO-C₃H₆-O₂ is the oxidation of NO to NO₂ because NO does not react with propene at the present temperature range. Accordingly, the next step is the reaction of NO₂ with propene.

The reactivity of NO_2 was investigated next. Fig. 4 shows the catalytic activity for the reduction of NO_2 with propene in the presence of dioxygen. It is quite interesting that the most active catalyst for NO_2 reduction was not CoO/Al_2O_3 but Al_2O_3 . The addition of cobalt decreased NO_2 conversion to N_2 . The activity of FeO/Al_2O_3 was not good, either.

It was also found that direct reduction of NO₂ with propene over CoO/Al₂O₃ catalysts in the absence of dioxygen gave almost the

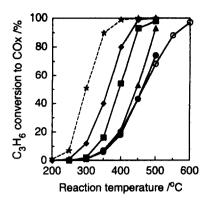
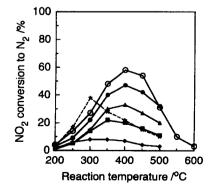


Fig. 3. Activity of CoO/ and FeO/Al₂O₃ (500) for the oxidation of C₃H₆. (O₂ = 9.9%, C₃H₆ = 326 ppm, W/F = 0.19 g s cm⁻³) \bigcirc Al₂O₃, \bigcirc 0.1% CoO, \triangle 0.5% CoO, \bigcirc 2% CoO, \bigcirc 5% CoO. \bigcirc 2% FeO.

same results as of Fig. 4 with regard to NO_2 conversion to N_2 . In the case of FeO/Al_2O_3 -catalyzed NO_2 reduction with propene, however, two reduction peaks were observed. The peak at higher temperature was found to correspond to the direct reduction of NO with propene.


The above-described results suggest that the reaction of NO-C₃H₆-O₂ over CoO/Al₂O₃ proceed via the following steps.

$$NO + O_2 \rightarrow NO_2 \tag{1}$$

$$NO_2 + C_3H_6 \rightarrow N_2 + CO_x + H_2O$$
 (2)

$$NO_2 + C_3H_6 \rightarrow NO + CO_x + H_2O$$
 (3)

Although the rate of reaction (1) is low on alumina, impregnated cobalt species promotes

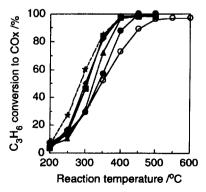


Fig. 4. Activity of CoO/ and FeO/Al₂O₃ (500) for the selective reduction of NO₂ with C₃H₆. (NO₂ = 939 ppm, O₂ = 9.9%, C₃H₆ = 326 ppm, W/F = 0.19 g s cm⁻³) \bigcirc Al₂O₃, \bigcirc 0.1% CoO, \triangle 0.5% CoO, \bigcirc 2% CoO, \bigcirc 5% CoO, \bigcirc 2% FeO.

this reaction step. The formation of N_2 results from reaction (2) which probably takes place on the alumina surface. The supported cobalt species is not responsible for the second step but causes a side reaction (3) leading to the oxidation of propene to CO_x without reducing NO_2 . The low $deNO_x$ activity of FeO/Al_2O_3 can be ascribed to its high activity for propene oxidation with dioxygen.

3.2. Catalyst characterization

The status of the supported metals was analyzed by various techniques. XPS given in Fig. 5 showed that the electronic state of the cobalt species in 2-5% CoO/Al₂O₃ was very close to cobalt acetate or cobalt aluminate (CoAl₂O₄). Transmission electron microscope analysis indicated that there were no large particles on the surface of 2% CoO/Al₂O₃ while particles with diameters of 10-30 nm were observed on 2% FeO/Al₂O₃. The particles were found to con-

Table 1
Amount of chemisorbed NO

Sample	NO chem./mol g ⁻¹
Al ₂ O ₃	0
0.1% Co/Al ₂ O ₃ (500)	0.31×10^{-6}
0.5% CoO/Al ₂ O ₃ (500)	3.00×10^{-6}
2% CoO/Al ₂ O ₃ (500)	6.07×10^{-6}
5% CoO/Al ₂ O ₃ (500)	19.1×10^{-6}
2% CoO/Al ₂ O ₃ (600)	6.31×10^{-6}
2% CoO/Al ₂ O ₃ (800)	4.11×10^{-6}
2% FeO/Al ₂ O ₃ (500)	4.93×10^{-6}
$2\% \text{ FeO/Al}_2^2 \text{O}_3 \text{ (SG)}$	10.1×10^{-6}

tain iron by elemental analysis. Taking all XPS into account, it was suggested that they are particles of Fe₂O₃.

In order to know the metal ion dispersion on alumina, NO chemisorption measurements were performed. The results are shown in Table 1. For CoO/Al₂O₃, the amount of chemisorbed NO increased with cobalt loading, suggesting increasing surface cobalt ions. Since it was re-

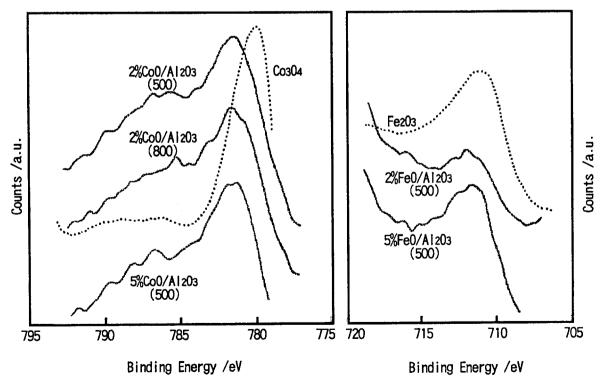


Fig. 5. XPS spectra of CoO/Al₂O₃ and FeO/Al₂O₃ in the region of 2p_{3/2}.

ported that NO is not chemisorbed on Co/Al₂O₄ because the cobalt ions are shielded from the surface [8], the possibility cannot be ruled out that some surface cobalt species are not as in cobalt aluminate. Calcination of CoO/Al₂O₃ at higher temperatures decreased the amount of chemisorbed NO. At the moment, the true active species for the deNO, activity is not clear. However, too much surface cobalt ions seem to decrease the activity probably because of the promotion of unfavorable side reactions such as reaction (3). The loss of deNO. activity for FeO/Al₂O₃ is due to the presence of large Fe₂O₃ particles catalyzing propene oxidation by dioxygen.

3.3. Activity of cobalt / and iron / alumina prepared with sol-gel method

Since highly dispersed surface metal species appears responsible for the promotion of deNO_x activity, we investigated the activity of CoO/and FeO/Al₂O₃ prepared with sol-gel method. There was not large difference between the activity of CoO/Al₂O₃(SG) and CoO/Al₂O₃. On the other hand, FeO/Al₂O₃ (SG) showed much higher activity for NO reduction than FeO/Al₂O₃, as demonstrated by Fig. 6. FeO/Al₂O₃ (SG) with 0.5% FeO was quite active for NO reduction at 300–400°C in contrast to the impregnated FeO/Al₂O₃. The large amount of chemisorbed NO on 2% FeO/Al₂O₃ (SG) given in Table 1 indicated high dispersion of iron ions on the surface.

The difference in the property of cobalt and iron for the impregnated catalysts is considered

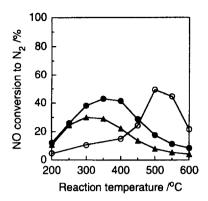


Fig. 6. Activity of FeO/Al₂O₃ (600) prepared with the sol-gel method. (NO = 962 ppm, O₂ = 9.9%, C₃H₆ = 326 ppm, $W/F = 0.19 \text{ g s cm}^{-3}$) \bigcirc Al₂O₃, \bigcirc 0.5% FeO/Al₂O₃ (SG), \triangle 2% FeO/Al₂O₃ (SG).

partly due to the difference of starting salts for catalyst preparation. But also the stability of metal/aluminate seems responsible for the difference. In fact, thermodynamic calculation showed that cobalt/aluminate species are much more stable than iron/aluminate in the presence of 10% dioxygen.

References

- [1] M. Iwamoto and H. Yahiro, Catal. Today, 22 (1994) 5.
- [2] H. Hamada, Catal. Today, 22 (1994) 21.
- [3] Y. Kintaichi, H. Hamada, M. Tabata, M. Sasaki and T. Ito, Catal. Lett., 6 (1990) 239.
- [4] A. Obuchi, A. Ohi, M. Nakamura, A. Ogata, K. Mizuno and H. Ohuchi, Appl. Catal. B, 2 (1993) 71.
- [5] H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito and M. Tabata, Appl. Catal., 75 (1991) L1.
- [6] T. Miyadera, Appl. Catal. B, 2 (1993) 199.
- [7] A. Ueda and M. Haruta, Shokubai, 36 (1994) 112.
- [8] H. C. Yao and M. Shelef, in R. L. Klimisch and J. G. Larson (Editors), The Catalytic Chemistry of Nitrogen Oxides, Plenum Press, New York, 1975, p. 45.